

Area Bounded by Curves

Exercise

- 1. The area between the curves $y = \sin x$ and the X-axis from x = 0 to $x = 2\pi$ is equal to
 - (a) 2 sq. units (b) 4 sq. units
 - (c) 1/2 sq. units (d) 1/4 sq. units
- 2. Area lying in the first quadrant and bounded by the curve $y = x^3$ and the line y = 4x is
 - (a) 2 (b) 3
 - (c) 4 (d) 5
- 3. The area bounded by the curve |x| + y = 1 and the axis of X is
 - (a) 4 (b) 2
 - (c) 1 (d) 1/2
- 4. The area enclosed between the curves $y^2 = x$ and y = |x| is
 - (a) $\frac{2}{3}$ (b) 1
 - (d) $\frac{1}{3}$ (c)
- The area cut off the parabola $4y = 3x^2$ by the straight 5. line 2y = 3x + 12 in sq. unit is

(a)	16	(b)	21
(c)	27	(d)	36

- 6. The area of region bounded by y = |x 1| and y = 1 is
 - (a) 1 (b) 2
 - (c) $\frac{1}{2}$ (d) None of these
- 7. The area inside the parabola $5x^2 y = 0$ but outside the parabola $2x^2 - y + 9 = 0$ is
 - (a) $12\sqrt{3}$ (b) $6\sqrt{3}$
 - (d) $4\sqrt{3}$ (c) $8\sqrt{3}$
- 8. Area bounded by the curves x = 1, x = 3, xy = 1 and X-axis is
 - (a) log 2 (b) log 3

- (c) $\log 4$ (d) None of these
- 9. The area of the figure bounded by the curve $|y| = 1 - x^2$ is [NDA-II 2016]
 - (a) 2/3 (b) 4/3
 - (c) 8/3 (d) None of these
- 10. Area lying between the parabola $y^2 = 4ax$ and its latus rectum is

(a)
$$\frac{8}{3}a^2$$
 (b) $\frac{8}{3}a$
(c) $\frac{4}{3}a$ (d) $\frac{4}{3}a^2$

- 11. The area bounded by $y = \cos x$ and $x = -\frac{\pi}{2}$ and $x = 2\pi$ and the axis of X in square units is
 - (a) 4 (b) 5 (c) 6 (d) 7
- 12. The area common to the circle $x^2 + y^2 = 16a^2$ and the parabola $y^2 = 6ax$ is

(a)
$$\frac{4a^2}{3}(4\pi - \sqrt{3})$$
 (b) $\frac{4a^2}{3}(8\pi - 3)$
(c) $\frac{4a^2}{3}(4\pi + \sqrt{3})$ (d) None of these

- 13. Area enclosed between $y = ax^2$ and $x = ay^2$ (a > 0) is 1, then *a* is
 - (a) $1/\sqrt{3}$ (b) 1/2 (d) 1/3 (c) 1
- 14. Smaller area enclosed by the circle $x^2 + y^2 = 4$ and the line x + y = 2 is
 - (b) $\pi 2$ (a) $2(\pi - 2)$
 - (c) $2\pi 1$ (d) None of these
- 15. Area common to the parabolas $y = 2x^2$ and $y = x^2 + 4$ is
 - (b) 8/3 (a) 16/3
 - (c) 32/3 (d) None of these

Area Bounded by Curves

16.	If the ordinate $x = a$ divides the area bounded by the									
	curve $y = \left(1 + \frac{8}{x^2}\right)$ and the ordinates $x = 2, x = 4$ into									
	two equal parts, then <i>a</i> is									
	(a) 3	(b) $2\sqrt{2}$								
	(c) $2\sqrt{3}$	(d) $3\sqrt{2}$								
17	Area bounded by the cu	irves $v = \sqrt{x}$ $x = 2v + 3$ in first								
1,1	quadrant and X-axis is	drant and X-axis is								
	(a) $2\sqrt{3}$	(b) 18								
	(c) 9	(d) 34/3								
18.	The area bounded by the curve $y = x x $, X-axis and the ordinates $x = 1, -1$ is given by									
	(a) 0	(b) 1/3								
	(c) 2/3	(d) None of these								
19.	If A is the area lying	between the curve $y = \sin x$								
	and X-axis between $x =$	= 0 and $\pi/2$, area of the region								
	between the curve $y =$ interval is given by	between the curve $y = \sin 2x$ and X-axis in the same nterval is given by								
	(a) $A/2$	(b) <i>A</i>								
	(c) $2A$	(d) None of these								
20.	Area of the region boun	ded by the curve $y^2 = 4x$, <i>Y</i> -axis								
	and the line $y = 3$ is									
	(a) 2 sq. units	(b) 9/4 sq. units								
	(c) $6\sqrt{3}$ sq. units	(d) None of these								
21.	The area of the reg	ion bounded by the curves								
	$y^2 = 2x + 1$ and $x - y - 1$	1 = 0 is								
	(a) 4/3	(b) 8/3								
	(c) 14/3	(d) 16/3								
22.	The area bounded by the parabola $y = 2 - x^2$ and the									
	straight line $y + x = 0$ is									
	(a) $\frac{17}{1}$	(b) $\frac{34}{}$								
	6	7								
	(c) $\frac{9}{2}$	(d) $\frac{7}{2}$								
22	2	2								
23.	If A is the area between the curve $y = \sin x$ and the $\begin{bmatrix} x \\ y \end{bmatrix}$									
	X-axis in the interval $\begin{bmatrix} 0, \frac{\pi}{4} \end{bmatrix}$, then the area between the									
	curve $y = \cos x$ and X-axis, in the same interval is									
	(a) <i>A</i>	(b) $1 - A$								
	(c) $\frac{\pi}{2} - A$	(d) $\frac{\pi}{2} + A$								
24.	If A_1, A_2 be the areas of	The curves $x^2 + y^2 + 18x + 24y$								

If
$$A_1, A_2$$
 be the areas of the curves $x^2 + y^2 + 18x + 2$
= 0 and $\frac{x^2}{14} + \frac{y^2}{13} = 1$, then
(a) $A_1 > A_2$ (b) $A_1 < A_2$
(c) $A_1 = A_2$ (d) None of these

25. The area bounded by the parabola $y^2 = 4x$ and x + y = 3 is :

- (a) $\frac{16}{3}$ (b) $\frac{32}{3}$ (c) $\frac{64}{3}$ (d) $\frac{166}{3}$
- 26. The area of the region lying between the line x y + 2= 0 and the curve $x = \sqrt{y}$ is
 - (a) 9 (b) 9/2
 - (c) 10/3 (d) None of these

Directions (Q. Nos. 27 and 28) :

Consider the curves f(x) = x |x| - 1

and
$$g(x) = \begin{cases} \frac{3x}{2}, & x > 0\\ 2x, & x \le 0 \end{cases}$$

27. Where do the curves intersect?

- (a) Only at (2, 3)
- (b) Only at (− 1, − 2)
- (c) At (2, 3) and (-1, -2)
- (d) Neither at (2, 3) nor at (-1, -2)
- 28. What is the area bounded by the curves?

[NDA-I-2016]

(a)
$$\frac{17}{6}$$
 sq. units
(b) $\frac{8}{3}$ sq. units
(c) 2 sq. units
(d) $\frac{1}{3}$ sq. units

Directions (Q. Nos. 29 and 30) :

Consider the curves y = |x - 1| and |x| = 2

29. What is/are the points of intersection of the curves?

[NDA-I-2016]

- (a) Only (-2, 3)
 (b) Only (2, 1)
 (c) (-2, 3) and (2, 1)
 (d) Neither (-2, 3) nor (2, 1)
- 30. What is the area of the region bounded by the curves and *X*-axis? **[NDA-I-2016]**
 - (a) 3 sq. units (b) 4 sq. units
 - (c) 5 sq. units (d) 6 sq. units
- 31. What is the area of the region bounded by X-axis, the curve $f(x) = |x 1| + x^2$, where $x \in R$ and the two ordinates $x = \frac{1}{2}$ and x = 1? [NDA-I-2016] (a) $\frac{5}{12}$ sq. units (b) $\frac{5}{6}$ sq. units

(c)
$$\frac{7}{6}$$
 sq. units (d) 2 sq. units

32. What is the area of the region bounded by X-axis, the curve $f(x) = |x - 1| + x^2$, where $x \in R$ and the two ordinates x = 1 and $x = \frac{3}{2}$ [NDA-I-2016]

(a)
$$\frac{5}{12}$$
 sq. units (b) $\frac{7}{12}$ sq. units
(c) $\frac{2}{3}$ sq. units (d) $\frac{11}{12}$ sq. units
33. The area of the figure bounded by the curve $|y| = 1 - x^2$ is [NDA-II-2016]
(a) $2/3$ (b) $4/3$ (c) $8/3$ (d) None of these
34. Area enclosed by $|x| + |y| = 1$ is equal to [NDA-II-2017]
(a) $2\sqrt{2}$ sq. units (b) 2 sq. units
(c) 1 sq. units (d) $2\sqrt{3}$ sq. units
(c) 1 sq. units (d) $2\sqrt{3}$ sq. units
35. What is the area of the region bounded by the parabolas $y^2 = 6(x-1)$ and $y^2 = 3x$? [NDA-I-2018]
(a) $\frac{\sqrt{6}}{3}$ (b) $\frac{2\sqrt{6}}{3}$
(c) $\frac{4\sqrt{6}}{3}$ (d) $\frac{5\sqrt{6}}{3}$
36. The area of the loop between the curve $y = c \sin x$ and the *x*-axis is [NDA-I-2019]
36. The area of the loop between the curve $y = c \sin x$ and the *x*-axis is [NDA-I-2019]
36. The area of the loop between the curve $y = c \sin x$ and the *x*-axis is [NDA-I-2019]
36. The area of the loop between the curve $y = c \sin x$ and the *x*-axis is [NDA-I-2019]
36. The area of the loop between the curve $y = c \sin x$ and the *x*-axis is [NDA-I-2019]
36. The area of the loop between the curve $y = c \sin x$ and the *x*-axis is [NDA-I-2019]
36. The area of the loop between the curve $y = c \sin x$ and the *x*-axis is [NDA-I-2019]
36. The area of the loop between the curve $y = c \sin x$ and the *x*-axis is [NDA-I-2019]
36. The area of the loop between the curve $y = c \sin x$ and the *x*-axis is [NDA-I-2019]
36. The area of the loop between the curve $y = c \sin x$ and the *x*-axis is [NDA-I-2019]
37. What is the area bounded by $y = [x]$, where [·] is the greatest integer function, the *x*-axis and the lines $x = -1.5$ and $x = -1.8$? [NDA-II-2021]
37. What is the area of the loop between the curve $y = c \sin x$ and the lines $x = -1.5$ and $x = -1.8$? [NDA-II-2021]
38. What is the area of the loop between the curve $y = c \sin x$ and the lines $x = 0.5$ and $x = -1.5$ and x

ANSWERS																			
1.	(b)	2.	(c)	3.	(c)	4.	(c)	5.	(c)	6.	(a)	7.	(a)	8.	(b)	9.	(c)	10.	(a)
11.	(b)	12.	(c)	13.	(a)	14.	(b)	15.	(c)	16.	(b)	17.	(c)	18.	(c)	19.	(b)	20.	(b)
21.	(d)	22.	(c)	23.	(b)	24.	(a)	25.	(c)	26.	(b)	27.	(c)	28.	(b)	29.	(c)	30.	(c)
31.	(a)	32.	(d)	33.	(c)	34.	(b)	35.	(c)	36.	(b)	37.	(b)	38.	(a)	39.	(b)	40.	(b)

Explanations

1. (b) $A = \int_0^{2\pi} \sin x \, dx = \int_0^{\pi} \sin x \, dx + \int_{\pi}^{2\pi} (-\sin x) \, dx$

$$= [-\cos x]_0^{n} + [\cos x]_{\pi}^{2n} = 4$$
 sq. units

2. (c) $y = x^3$ is a curve known as semi-cubical parabola.

If $x \to -x$ and $y \to -y$ the equation does not change. It is symmetrical in Ist and 3rd quadrants.

The line y = 4x meets $y = x^3$ at x = 0, 2, -2 where y = 0, 8, -8.

Area in Ist quadrant = $\int_0^2 (y_1 - y_2) dx$

$$= \int_0^2 (4x - x^3) \, dx = 4$$

3. (c) |x| + y = 1 can be written as x + y = 1; $x \ge 0$ and -x + y = 1; x < 0.

These are the two straight lines,

So, area bounded by these lines and *X*-axis is $A = \text{area of } \Delta ABC = 2 \text{ (area of } \Delta OBC)$

$$= 2\left\{\frac{1}{2} \times 1 \times 1\right\} = 1$$

4. (c) y = |x| can be written as y = x,

when $x \ge 0$ and y = -x, when x < 0Area bounded by $y^2 = x$ and y = |x|

$$A = \int_0^1 (y_1 - y_2) \, dx = \int_0^1 (\sqrt{x} - x) \, dx$$
$$= \left[\frac{x^{3/2}}{3/2} - \frac{x^2}{2}\right]_0^1 = \left[\frac{2}{3} - \frac{1}{2}\right] = \frac{1}{6}$$

5. (c) Eliminating *y*, we get $2(3x + 12) = 3x^2$

or
$$(x-4)(3x+6) = 0$$

$$x = 2, x = 10$$

i.e., the points of intersection are (-2, 3) and (4, 12)

$$A = \int_{-2}^{4} (y_1 - y_2) dx$$
$$= \int_{-2}^{4} \left(\frac{3x + 12}{2} - \frac{3}{4}x^2\right) dx$$

= 27 sq. units.

(i)
$$y = x - 1, x > 1$$

(ii) $y = -(x - 1), x < 1$
(iii) $y = 1$

These three lines enclose a triangle whose area is

$$A = \frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} \times 2 \times 1 = 1$$

7. (a) Solving
$$5x^2 - y = 0$$
 and $2x^2 - y + 9 = 0$

We get
$$x = -\sqrt{3}$$
, $\sqrt{3}$
So, required area $= 2 \int_{0}^{\sqrt{3}} \{(2x^2 + 9) - 5x^2\} dx$
 $= 2 \int_{0}^{\sqrt{3}} (9 - 3x^2) dx = 2[9x - x^3]_{0}^{\sqrt{3}}$
 $= 2[9\sqrt{3} - 3\sqrt{3}] = 12\sqrt{3}$

8. (b) Bounded area $= \int_{1}^{3} \frac{1}{x} dx = \log 3$ 9. (c) $y = 1 - x^2, y > 0$

Bounded area $A = \int_0^{1/a} \left(\sqrt{\frac{x}{a}} - ax^2 \right) dx$

$$1 = \left\lfloor \frac{2}{3} \frac{x^{1/2}}{\sqrt{a}} - a \frac{x^{*}}{3} \right\rfloor_{0}$$
$$1 = \left(\frac{2}{3} - \frac{1}{3}\right) \frac{1}{a^{2}} \implies a = \frac{1}{\sqrt{3}}$$

Area Bounded by Curves

15. (c) $y = 2x^2$ cuts $y = x^2 + 4$ at x = 2 and x = -2

Given,
$$A_1 = \frac{1}{2}A$$

 $\Rightarrow a - \frac{8}{a} + 2 = 2$
 $\Rightarrow a^2 - 8 = 0 \Rightarrow a = 2\sqrt{2}$

17. (c) $y = \sqrt{x}$ and x = 2y + 3 intersects at (9, 3) and (1, -1).

Area bounded by $y = \sqrt{x}$, x = 2y + 3 and X-axis in first quadrant $= \int_0^9 y \, dx$ – area of ΔALM

$$= \int_{0}^{9} \sqrt{x} \, dx - \frac{1}{2} \times 6 \times 3 = 9$$

18. (c) $y = x^{2}, x \ge 0$ and $y = -x^{2}, x < 0$
 $A = 2\int_{0}^{1} y \, dx = 2\int_{0}^{1} x^{2} \, dx = \frac{2}{3}$
or $|\int_{-1}^{0} (-x^{2}) \, dx + \int_{0}^{1} (x^{2}) \, dx| = \frac{2}{3}$
19. (b) $A = \int_{0}^{\pi/2} \sin x \, dx = [-\cos x]_{0}^{\pi/2} = 1$
Then, area between $\sin 2x$ and X-axis from

$$x = 0 \text{ to } \frac{\pi}{2}$$
$$A_2 = \int_0^{\pi/2} \sin 2x \, dx$$
$$= \left[\frac{-\cos 2x}{2}\right]_0^{\pi/2} = 1 = A$$

20. (b) Bounded area

$$= \int_{0}^{3} x \, dy = \int_{0}^{3} \frac{y^{2}}{4} \, dy = \frac{1}{4} \left[\frac{y^{3}}{3} \right]_{0}^{3} = \frac{9}{4} \text{ sq. units}$$

$$(0, 3)$$

$$y = 3$$

$$(0, 0)$$

$$y^{2} = 4x$$

184 21. (d)

The line y = x - 1 meets the parabola $y^2 = 2x + 1$ at (0, -1) and (4, 3).

So, Area
$$A = \int_{-1}^{3} (y+1) dy - \int_{-1}^{3} \left(\frac{y^2 - 1}{2}\right) dy$$

= $\left[\frac{y^2}{2} + y\right]_{-1}^{3} - \frac{1}{2} \left[\frac{y^3}{3} - y\right]_{-1}^{3} = \frac{16}{3}$

22. (c) $x^2 = -(y-2)$ and the line y + x = 0, cuts it in the points $x^2 - x - 2 = 0$ or (x - 2)(x + 1) = 0

L

$$= \left(4 - \frac{8}{3} + 2\right) - \left(-2 + \frac{1}{3} + \frac{1}{2}\right) = \frac{9}{2}$$
23. (d) $A = \int_{0}^{\pi/4} \sin x \, dx = 1 - \frac{1}{\sqrt{2}}$
 $A_{1} = \int_{0}^{\pi/4} \cos x \, dx = \frac{1}{\sqrt{2}}$
 $\Rightarrow A = 1 - A_{1} \Rightarrow A_{1} = 1 - A.$
24. (a) $x^{2} + y^{2} + 18x + 24y = 0$ is a circle whose centre

24. (a) $x^2 + y^2 + 18x + 24y = 0$ is a circle whose centre is (-9, -12) and radius = $\sqrt{81+144} = 15$ and area $A_1 = \pi^2 r = 225\pi$

$$\frac{x^2}{14} + \frac{y^2}{13} = 1 \text{ is an ellipse,}$$

where $a = \sqrt{14}$ and $b = \sqrt{13}$
and area $A_2 = \pi ab = \sqrt{182}\pi \implies A_1 > A_2$.
25. (c) The line meets the parabola at $(9, -6)$ and $(1, 2)$.

26. (b) Curve $x = \sqrt{y}$ and line x - y + 2 = 0 meets at (-1, 1) and (2, 4).

we get
$$x = -\frac{1}{2}$$
 or $x = 2$
 $\therefore x > 0$ so $x = 2 \implies f(x) = g(x) = 3$
When $x \le 0$
Solving $g(x) = 2x$ and $f(x) = -x^2 - 1$
 $\implies g(x) = f(x) = -2$
So, intersection points of both curves are $(-1, -2)$
and $(2, 3)$.

28. (b) Area bounded by the curve

$$= \int_{1/2}^{1} \{1 - x + x^{2}\} dx$$

$$= \left[x - \frac{x^{2}}{2} + \frac{x^{3}}{3}\right]_{1/2}^{1}$$

$$= \frac{5}{12} \text{ sq. units}$$

32. (d) Area bounded by $f(x) = |x - 1| + x^{2}$ and ordinates
 $x = 1$ and $x = \frac{3}{2}$ by X-axis.

$$A = \int_{1}^{3/2} \{|x - 1| + x^{2}\} dx$$

$$= \int_{1}^{3/2} (x - 1 + x^{2}) dx$$

$$= \left[\frac{x^{2}}{2} - x + \frac{x^{3}}{3}\right]_{1}^{3/2}$$

$$= \frac{9}{8} - \frac{3}{2} + \frac{9}{8} - \frac{1}{2} + 1 - \frac{1}{3}$$

$$= \frac{11}{12} \text{ sq. units}$$

33. (c) $y = 1 - x^{2}, y > 0$
(0, 1)

$$A = \int_{1}^{1} (x - 1) + x^{2} dx$$

$$= \left[\frac{x^{2}}{2} - x + \frac{x^{3}}{3}\right]_{1}^{3/2}$$

$$= \frac{9}{8} - \frac{3}{2} + \frac{9}{8} - \frac{1}{2} + 1 - \frac{1}{3}$$

$$= \frac{11}{12} \text{ sq. units}$$

33. (c) $y = 1 - x^{2}, y > 0$

33.

34.

 $A = \int_{1/2}^{1} \{ |x-1| + x^2 \} dx$

$$X' (-1, 0) \qquad O \qquad (1, 0) \qquad X$$

(0, -1)
(0, -1)
(0, -1)
(0, -1)
(0, -1)
(1, 0)
$$X' = (1, 0) \qquad X$$

-x + y = 1 and -x - y = 1

So, bounded area = 4 × area of $\triangle OAB$ = 4 × $\frac{1}{2}$ = 2 sq units

$$-4 \times \frac{1}{2} = 2$$
 sq. units

35. (c) Given curves are $y^2 = 6(x-1)$ and $y^2 = 3x$ On solving, we get $3x = 6(x-1) \Rightarrow 2(x-1) = x$

$$\Rightarrow x = 2 \text{ and } y = \pm \sqrt{6}$$

Bounded area is

$$A = 2\int_0^{\sqrt{6}} \left\{ \left(\frac{y^2}{6} + 1 \right) - \left(\frac{y^2}{3} \right) \right\} dy$$
$$= 2\int_0^{\sqrt{6}} \left(1 - \frac{y^2}{6} \right) dy = 2 \left\{ y - \frac{y^3}{18} \right\}_0^{\sqrt{6}}$$
$$= 2 \left[\sqrt{6} - \frac{6\sqrt{6}}{18} \right] = 2 \left[\sqrt{6} - \frac{\sqrt{6}}{3} \right] = \frac{4}{3}\sqrt{6}$$

36. (b) When y = 0, we have c sin x = 0, hence x = (0, π).
So, we have two consecutive values 0 and π of x for which y = 0.

Hence, one loop of curve lies between x = 0 and $x = \pi$.

 \therefore Area of this loop $= \int_0^{\pi} y \, dx$

$$= \int_0^{\pi} c \sin x \, dx = [-a \cos x]_0^{\pi} = 2c$$

- 37. (b) Area bounded by | x | < 5 and y = 0 and y = 8 is given by rectangle ABCD.
 So, bounded area = length × breadth = 10 × 8 = 80 sq. units.
- 38. (a) Intersection point of line y = x and parabola $y^2 = 2x$ is (0, 0) and (2, 2).

So, bounded area =
$$\int_0^2 (\sqrt{2x} - x) dx$$

$$= \left[\sqrt{2}\frac{2}{3}x^{3/2} - \frac{x^2}{2}\right]_0^2 = \frac{8}{3} - 2 = \frac{2}{3}$$
 sq. units

39. (b) Given curve is

$$y = \sqrt{16 - x^{2}} \implies x^{2} + y^{2} = 16$$

$$A = \int_{-1}^{4} \sqrt{16 - x^{2}} dx$$

$$y$$

$$(0, 0) \quad (4, 0) \qquad X$$

$$= \text{ area of semicircle } = \frac{1}{2}\pi r^{2} = 8\pi \text{ sq. units}$$

$$40. (b) \quad A = \int_{x=-1.5}^{-1.8} [x] dx$$

$$As - 1.5 \le x < -1.8 \Rightarrow [x] = -2$$

$$So \text{ Area } A = \int_{-1.8}^{-1.8} -2 dx$$

$$= -2 [x]_{-1.5}^{-1.8}$$

= -2 [-1.8 + 1.5]
= -2 [-0.3] = 0.6